Robust Optimization in the Presence of Uncertainty:
Counting approximately-shortest paths in directed acyclic graphs

Matúš Mihalák, Rastislav Šrámek, Peter Widmayer

ETH Zürich

pre-WALCOM-school, Chennai, Feb. 11, 2014
What?
Given s and t:

- Shortest path
Given s and t:
- Shortest path
- All shortest paths
Given s and t:

- Shortest path
- All shortest paths
- k shortest paths
Given s and t:

- Shortest path
- All shortest paths
- k shortest paths
- All paths
Given s and t:

- Shortest path
- All shortest paths
- k shortest paths
- All paths
- Count paths no longer than L.

s-t paths
Problem (1)

Given a weighted directed acyclic graph G, two vertices s and t, and a threshold length L, how many s-t paths no longer than L are there in G?
Count short paths in a DAG

Problem (1)

Given a weighted directed acyclic graph G, two vertices s and t, and a threshold length L, how many s-t paths no longer than L are there in G?
Problem (1)

Given a weighted directed acyclic graph G, two vertices s and t, and a threshold length L, how many s-t paths no longer than L are there in G?

#P-complete, reduction from partition.
Count short paths in a bi-criteria DAGs

Problem (2)

Given a directed acyclic graph G with two sets of edge-weights, two vertices s and t, and threshold lengths L_1, L_2, how many s-t paths no longer than L_1 when evaluated on the first set of edge lengths and no longer than L_2 when evaluated on the second set of edge lengths are there in G?
Why?
Shortest paths on DAGs

- HMM Viterbi decoding
- Biological sequence alignment
- De-novo peptide sequencing
- Dynamic programming
How?
Counting paths on DAGs

Vertices in topological order, $s = v_1$, $t = v_n$.

How many paths no longer than ℓ from v_1 to v_i?
Counting paths on DAGs

Vertices in topological order, \(s = v_1, t = v_n \).

How many paths no longer than \(\ell \) from \(v_1 \) to \(v_i \)?

\(\ell \in [28, 32) \)
Counting paths on DAGs

Vertices in topological order, $s = v_1$, $t = v_n$.

How many paths no longer than ℓ from v_1 to v_i?

$\ell \in [28, 32)$
Counting paths on DAGs (2)

$\tau(v_i, a)$: Minimum length ℓ so that there are at least $a \, v_1 \ldots v_i$ paths no longer than ℓ.

$\tau(v_n, a) \leq L \leq \tau(v_n, a + 1)$
Recurrence for counting paths on DAGs

Paths to \(v_i \) come from:

\[
\tau(v_i, a) = \min_{a_1, \ldots, a_d} \left(\tau(p_1, a_1) + l_1 + \ldots + \tau(p_d, a_d) + l_d \right)
\]

Problems:

1. \(a \) runs from 0 to \(2^n - 2 \).
2. Trying all possible \(a_1, \ldots, a_d \) is exponential in maximum in-degree.
Recurrence for counting paths on DAGs

Paths to v_i come from:

$$
\tau(v_i, a) = \max \left\{ \tau(p_1, a_1) + l_1, \ldots, \tau(p_d, a_d) + l_d \right\}
$$
Recurrence for counting paths on DAGs

Paths to v_i come from:

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{l} \tau(p_1, a_1) + l_1 \\ \vdots \\ \tau(p_d, a_d) + l_d \end{array} \right\} \]
Recurrence for counting paths on DAGs

Paths to v_i come from:

$$
\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{c}
\tau(p_1, a_1) + l_1 \\
\vdots \\
\tau(p_d, a_d) + l_d
\end{array} \right.
$$

Problems:

1. a runs from 0 to 2^{n-2}.
2. Trying all possible a_1, \ldots, a_d is exponential in maximum in-degree.
Discretization

Division points at $(1 + \varepsilon)^k \rightarrow 1 + \varepsilon$ precision.
Division points at $(1 + \varepsilon)^k \rightarrow 1 + \varepsilon$ precision.

In reality we can err when evaluating the recurrence so we need to be even more precise, $\rightarrow (1 + \varepsilon)^{k/n}$. Number of different bins for a is $O(n^2 \varepsilon^{-1})$.
Minimization

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \begin{cases} \tau(p_1, a_1) + l_1 \\ \vdots \\ \tau(p_d, a_d) + l_d \end{cases} \]

\[\tau(p_i, a_i) \text{ is monotonous with increasing } a_i: \]
Minimization

$$\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{ll} \tau(p_1, a_1) + l_1 \\ \vdots \\ \tau(p_d, a_d) + l_d \end{array} \right\}$$

$$\tau(p_i, a_i)$$ is monotonous with increasing $$a_i$$:
Minimization

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{l}
\tau(p_1, a_1) + l_1 \\
\vdots \\
\tau(p_d, a_d) + l_d
\end{array} \right\} \]

\(\tau(p_i, a_i) \) is monotonous with increasing \(a_i \):
Minimization

\[
\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \begin{cases}
\tau(p_1, a_1) + l_1 \\
\vdots \\
\tau(p_d, a_d) + l_d
\end{cases}
\]

\(\tau(p_i, a_i)\) is monotonous with increasing \(a_i\):
Minimization

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{l}
\tau(p_1, a_1) + l_1 \\
\vdots \\
\tau(p_d, a_d) + l_d
\end{array} \right\} \]

\(\tau(p_i, a_i) \) is monotonous with increasing \(a_i \):
Minimization

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{l} \tau(p_1, a_1) + l_1 \\ \vdots \\ \tau(p_d, a_d) + l_d \end{array} \right\} \]

\(\tau(p_i, a_i) \) is monotonous with increasing \(a_i \):
Minimization

\[\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \tau(p_1, a_1) + l_1, \ldots, \tau(p_d, a_d) + l_d \right\} \]

\(\tau(p_i, a_i) \) is monotonous with increasing \(a_i \):
Minimization

\[
\tau(v_i, a) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{l} \tau(p_1, a_1) + l_1 \\
\vdots \\
\tau(p_d, a_d) + l_d \end{array} \right.
\]

\(\tau(p_i, a_i)\) is monotonous with increasing \(a_i\):

We can do all \(a\) at once resulting in \(O(mn^2\varepsilon^{-1})\) time complexity.
Bi-criteria version is inapproximable

Reduction from knapsack: Is there a selection such that
\[\sum w \leq W, \sum p \geq P? \]

Count paths no longer than \(W \) and \(-P \).
Bi-criteria version is inapproximable

Reduction from knapsack: Is there a selection such that
\[\sum w \leq W, \sum p \geq P? \]

Count paths no longer than \(W \) and \(nC - P \).
Bi-criteria version is inapproximable

Reduction from knapsack: Is there a selection such that
\[\sum w \leq W, \sum p \geq P? \]

Count paths no longer than \(W \) and \(nC - P \).

Bi-criteria FPTAS for \#Knapsack [Gopalan et al., 2010].
Bi-criteria version (2)

\(\tau'(v_i, a, L_1) \) – minimum length \(L_2 \) such that there are at least \(a \) paths \(v_1 \rightarrow v_i \) no longer than \(L_1 \) in first instance and no longer than \(L_2 \) in second.

Goal: Find \(a \) such that \(\tau'(t, a, L_1) \leq L_2 \leq \tau'(t, a + 1, L_1) \).

\[
\tau'(i, a, L_1) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{c}
\tau'(p_1, a_1, L_1 - l_1) + l_1' \\
\vdots \\
\tau'(p_d, a_1, L_1 - l_d) + l_d'
\end{array} \right\}
\]
Bi-criteria version (2)

\(\tau'(v_i, a, L_1) \) – minimum length \(L_2 \) such that there are at least \(a \) paths \(v_1 \rightarrow v_i \) no longer than \(L_1 \) in first instance and no longer than \(L_2 \) in second.

Goal: Find \(a \) such that \(\tau'(t, a, L_1) \leq L_2 \leq \tau'(t, a + 1, L_1) \).

\[
\tau'(i, a, L_1) = \min_{a_1, \ldots, a_d} \max_{\sum a_j = a} \left\{ \begin{array}{ll}
\tau'(p_1, a_1, L_1 - l_1) + l_1' \\
\vdots \\
\tau'(p_d, a_1, L_1 - l_d) + l_d'
\end{array} \right.
\]

\((1 + \varepsilon)\)-approximate number of paths with length at most \(L_1 \) in the first graph and at most \((1 + \delta)\) times different from \(L_2 \) in the second graph: \(O(mn^3 \varepsilon^{-1} \delta^{-1} \log n \log L_1) \).
Conclusion and future work

- Counting approximate solutions is relevant for robustness.
- Counting paths shorter than a threshold is $\#P$-complete but has a FPTAS.
- Bi-criteria version is inapproximable
- Results are applicable for a large class of counting problems.

- Force ordering upon other problems, for instance spanning trees.
Thank you!